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ABSTRACT

Microwave interactions with inhomogeneous plasmas

are often studied by employing a simplified electromagnetic

approach, i.e., by representing the effects of the plasma

by an effective dielectric coefficient. The problems and

approximations associated with this procedure will be

discussed. The equation describing the microwave field

in an inhomogeneous partially ionized plasma will be

derived, and the method that has been applied to obtain

the reflected, transmitted, and absorbed intensities in

inhomogeneous plasmas will be presented. The interactions

of microwaves with plasmas which have Gaussian electron

density profiles have been considered by 
Klein.6 -10

In his work, as well as in other papers treating micro-

wave interactions with inhomogeneous plasmas, the variation

of collision frequency with position has been neglected.

In general, the assumption of constant collision frequency

is not justified; e.g., for a highly ionized plasma,

the electron density profile determines, in part, the

profile of the electron-ion collision frequency. The

effect of the variation of the collision frequency

profile on the interaction of microwaves with inhomo-

geneous plasmas has been studied in order to obtain an

estimate of the degree of error which may result when

constant collision frequency is assumed instead of a

more realistic collision frequency profile. It will be

shown that the degree of error is of particular importance

when microwave analysis is used as a plasma diagnostic.



MICROWAVE INTERACTIONS WITH INHOMOGENEOUS PARTIALLY IONIZED PLASMAS

A. H. Kritz, Space Science Laboratory, General Dynamics/Astronautics

I. INTRODUCTION

Theoretical considerations indicate that if the nature of a plasma

is sufficiently simple, microwave interactions with the plasma may yield

diagnostic information. The interactions of microwaves with the charged

plasma particles are normally treated by describing the plasma in terms

of an effective dielectric coefficient. The assumptions made in formula-

ting the dielectric treatment will be outlined below in Section II. In

Section III, the analyses and approximations employed in interpreting

the microwave data will be reviewed. Also, the results of some of the

previous theoretical studies of inhomogeneous plasmas will be summarized.

The effect of the collision frequency profile on microwave plasma

diagnostics will be discussed in Section IV. In the final section, the

problems associated with utilizing the diagnostic theory for microwave

interactions with inhomogeneous partially ionized plasmas will be

summarized. Also, the possibility of using electromagnetic scattering

from electron density fluctuations as a possible diagnostic tool will be

discussed briefly.

II. THE EFFECTIVE DIELECTRIC COEFFICIENT

In the derivation of the effective dielectric coefficient for a partially

ionized plasma, the following assumptions are required: The electrons,

ions, and neutrals are taken as three independent gases with interactions

smoothed into continuous forces. Only friction-like action and reaction

(collisional) forces and macroscopic electromagnetic forces are considered.

Mean velocities are employed in writing the equations of motion for the

three gases, and non-linearities are omitted by a perturbation treatment.

Since the gas must be, to a close approximation, electrically neutral,

the average ion density is taken equal to the average electron density

(ni = ne). A simple dielectric treatment would not be possible without

the additional assumptions that the velocity of the pla:;ma as a whole

is zero and that the gradients of the electron and ion pressures are zero,
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In order to be able to solve the equations of motion for the three

gases, it is necessary to obtain the expressions for the friction-like

collision forces. The collisional force exerted on the j'th particle

gas by the k'th particle gas is given by the average momentum a typical

j pwrticle loses per collision times the number of collisions per second,

v jk The j-k particle collision frequency is given by

V. Q -v .k - (n/n )v
jk j0L~ ' k j kj(i

where Qjk is the cross section for the j-k particle collision; vj, nj,

and m. are the velocity, number density, and mass, respectively, ofa
type j gas. The subscripts e, i, and a will be used to denote the electron,

ion, and neutral gases, respectively. Since me << mi, the electrons lose,

on the average, a quantity of momentum equal to their mean momentum m e(ve-i ) .

Therefore, the rate of loss of momentum per unit volume by the electron gas

due to collisions with the ions is

Fei = -menevei(Ze - vi). (2)

The rate at which the electron gas loses momentum is ecual to the rate

at which the ion gas gains momentum from the electron-ion collisions,

i.e. ,Fie = -Fei' Similarly for electron-neutral collisions,

eaF = -ne veame(e -- a) = navaeme(v a -v e ) = -Fae. (3)

The positive ions, in collision with the neutral atoms of the same mass

(it is assumed M = mi = ma), on the average, lose one-half their momentum

relative to the neutral gas. Therefore,

1 1F. = - - n viM(v. - v ) v navaiM(v - vi) = -F ai (4)
21 evia -i -a 2 a al ~a -i --ai'

On the basis of elementary theory, the following equations of motion

for the electron, ion, and neutral gases can now be written employing

the expressions for the frictional forces developed above:

3



n e
n v = n eE +-- (v x ) +F + F

ee e - c .e -0 -ei -ea (5)

n e

Mv. -n eE - -- (v H ) + F +F (6)
" i e- c /-i 0 -° ie iia

n Mv = F + F. (7)
a a ae -'(al

where E is the applied microwave field, and H is a constant magnetic

field imposed on the plasma. The microwave fields are taken to have a

harmonic time dependence e so that v. =-iwv..

Equations (5) to (7) can now be solved for the electron and ion

velocities, ve and vi, in terms of the applied microwave field, E;

consequently, the complex conductivity tensor, a, relating the current

density, j, and the electric field can be obtained:

j = en(v - vi) =o •. (8)

Consider now Maxwell's equations;

1 3

V x E = -i ) (+ )

= -ikE • E (10)

where k = W/c. From Equation (10) it is seen that the dielectric tensor,

, is given by

C= + ) (11)

where a is obtained from Equation (8). (The magnetic permeability has

been taken as unity in Maxwell's equations since the permeability has

been shown I to differ only infinitesimally from unity for most plasmas

of physical interest). If the external magnetic field, H., is assumed

to vanish, the dielectric tensor can be treated as a scalar, and Equation

(10) can be written

x H = -ikEE (12)
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If the motion of the ions is also neglected then the dielectric

coefficient has a fairly simple representation,

(W/)2 (v/W)(n /0n) 2
E =1- +___ p (13)

1 + (v/W)2 1 + (v/w)
2

where v = vei + v and w is the plasma frequency given byea p1/

142neI/
WP = m (14)

e

It is seen here that under the approximations outlined above the

difference in the treatment of a partially ionized plasma as to a fully

ionized plasma is reflected in the value of' the collision frequency;

i.e., in a fully ionized plasma the electron-neutral collision frequency

vanishes, V = 0. In the inhomogeneous plasma both w and v areea p

functions of position. Equations (9), (12), and (13) provide the basis

for the approximate electromagnetic treatment of a partially ionized

inhomogeneous plasma.

II. INTERACTIONS WITH INHOMOGENEOUS PLASMAS

The following equations for the microwave electric and magnetic

fields are obtained from Equations (9) and (12):

2 + k 2 E = -' (E -'- - ) (15)
E

2H + k 2H E ) x (V x H). (16)

If the plasma is uniform ( E7 = 0), Equations (15) and (16) reduce to

A-E + k2aE = 0 (17)

H + k2 EH = 0 (18)

where E is given by Equation (13) and is a function of position in an

inhomogeneous plasma. Also, if the variation in electron density and

collision frequency is normal to the electric field (E " ' c = 0), the

electric field satisfies Equation (17), or if the variation is in the
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direction of E (E x V e = 0), the magnetic field satisfies Equation (18).

Equations (17) and (18) describe the microwave fields within the

plasma when the geometric optics approximation is made, i.e.,

C II' ' <<( k." (19 )

Under this approximation, the right hand sides of Equations (15) and (16)

are of small order of magnitude so that they can be neglected. For most

applications of geometric optics c > 1; consequently, the condition expressed

in Equation (19) is satisfied when 7 E is comparatively small. However,

when the plasma is described in terms of an effective dielectric coeffi-

cient, e may be less than unity, and in the region c - 0, the condition

expressed in Equation (19) can not be satisfied even when V E is small.

An alternate procedure for the solution of the microwave-plasma interaction

problem, based on the integral representation of the field equations and

the application of the Born approximation, will be presented below. First,

however, some theoretical studies, based on the differential field equations,

will be discussed. In these studies, semi-infinite plasmas with electron

density variations along the rectangular coordinate normal to the plane

plasma boundary are considered; thus, for normal incidence, E , 2 c = 0.

V. A. Bailey2 has given a summary of the approximate analytic tech-

niques that have been applied to solve an equation having the form of

Equation (17) (with E a function of position). In addition, Bailey

presented a new approximate solution which, although somewhat cumbersome,

avoids some of the difficulties to which the more customary approximate

solutions are subject. Also, the solutions obtained by Bailey's technique

appear to have a greater range of validity than previous approximate solu-

tions.

There have been several studies of inhomogeneous plasmas in which the

electron density is chosen so that the solution to the field equations

could be expressed in terms of common special functions. Pappert and Plato3

considered a linear electron profile (the solution in terms of Hankel

functions of one-third order), a parabolic profile (the solution in terms

of Hermite functions), and a cosine profile, i.e., the argument varying

from zero to g/2 (Mathieu functions). They discussed the results of the
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linear profile in some detail especially with application to the reentry

telemetry problem. The reflection and transmission of electromagnetic

waves at linear electron density gradients has been studied also by

Albini and Jahn.4 Taylor 5 showed that the solution to the field equation

could be expressed in terms of cylindrical Bessel functions for both an

exponential rise in electron density and an electron density varying as
-2

x - Although certain electron density profiles can be treated analytically,

the results of studies of the interactions of microwaves with inhomogeneous

plasmas having special electron density profiles, such as those listed

above, have limited utility since (1) only very few profiles can be treated

analytically, (2) the reflection and transmission coefficients contain

rather complex functions which, in general, are not tabulated, and (3)

the variation of collision frequency with position is neglected (either

constant collision frequency is assumed or the collision frecuency is

omitted entirely).

In a paper by Klein, Greyber, King, and Brueckner and in several

reports by Klein7 "10 a series of problems involving the interactions of

microwaves with inhomogeneous plasmas are treated by employing the WKB

approximation and/or numerical methods; reflection, transmission, and

absorption amplitudes are presented for many cases. In the paper and in

one of the reports, an exponential electron density profile is considered;

n(x) = n exp 7-(x/d) x > O,

where d is measured in units of free space wavelength and the microwaves

are incident from the left. In an attempt to understand the interaction

of microwave radiation from a re-entry vehicle with the surrounding 
plasma,6 '8

non-normal incidence is treated by employing geometrical ray tracing proce-

dures which restricted the calculations to short wavelengths. In another
10

report, microwaves are assumed incident from the right on an exponential

profile (valid for all x). In order to investigate the interaction of

microwave radiation with a non-uniform plasma sheath adjacent to a

conducting wall, 9 Klein treated an exponential profile and a parabolic

profile adjacent to a conductor. The Gaussian electron density profile,

r 1
n(x) = n exp - (x/d)2 1 , (20)
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is considered in detail for the purpose of understanding microwave inter-

actions with a non-uniform ionized wake. In this study, as in the studies

described above, constant collision frequency is assumed. The Gaussian

density profile was employed in our investigation of the effect of the vari-

ation of the collision frequency on the interactions of microwaves with

inhomogeneous plasmas which is presented in Section IV. Klein investigated

the possibility of replacing the Gaussian electron variation by a homogeneous

slab of thickness 2d and electron density equal to n max . He found, however,

that the rectangular electron barrier was a good approximation only if the

slab is very thin compared to the free space wavelength, i.e., d < .05.

When the slab thickness is of the order, or greater than, the free space

wavelength, order of magnitude errors in the reflection, transmission, and

absorption amplitudes may result.

Maxwell's equations in differential form (Eqs. 15 and 16) have also

been applied in the study of the reflection of radio waves from the

ionosphere. In these studies it is necessary to include the effect of

the earth's magnetic field. Comprehensive reviews of this problem have

been given by Budden
11 and Ginzburg.

1 2

Because of the complexity of the problem of microwave interactions

with inhomogeneous plasmas, when plasmas involve coordinates other than

rectangular, it has been generally necessary to resort to expressing

Maxwell's equations in integral form and to applying the Born approxima-

tion. The interaction problem for a few electron profiles (such as

radial variation proportional to rn for cylindrical and spherical

coordinates) can be solved analytically using the differential form

of Maxwell's equations. However, more often than not, the solutions

involve special functions which are not tabulated. Below, we shall

discuss briefly the integral representation of the field equations and

some studies based thereon.

The differential field equations, Eqs. (15) and (16), can be written

in the following form:

7 x x - kE= k2 (-l) (21)

V x V x H - k 2H -ik V x (E-l)E (22)
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By considering the right side of Equations (21) and (22) as source terms,

the standard Green's function technique can be applied. Using the free

space Green's function,
exp ik.(rr'

G(r,') = 14 - (23)

where r and r' are the coordinates of the source and observation points,

respectively, we can express Eqs. (21) and (22) in integral form:15

E)= E r) + 7'G (Z')- E )r .dv'

v (24)

o ~ )ik 1 x III 'e( E G~ d(25)

V
where E and H are total fields and E and H are the incident fields.

If the Herztian potential due to induced polarization (r)-l E(,)
is expressed,

(26)

V

then Maxwell's equations can be written as follows:

E (r) = E- V V • + k 2 it (27)

Is(r) = H-H = -ikV x T . (28)

When the condition \E(r)-l << I is valid for the plasma under considera-

tion, the Born approximation can be applied to Equations (24) and (25),

i.e., E(r') in the integrand can be replaced by Eo(r'). This implies

that the field to which the scattering electrons are subject is only

the incident field. In general, for this condition to be valid, the electron

density has to be very low (W2 << W 2 ) or the collision frequency very high

2 i . bsrto
(VW >> ), i.e., absorption is neglected; consequently, the range of validity

of this approximation is quite limited.

The integral formulation was used by Barthel13 to calculate

scattering from a narrow cylindrical column, a homogeneous cylinder,

9



and a cylinder with a Gaussian radial distribution. Barthel has also

considered the inverse problem, i.e., the determination of the electron

density distribution when the scattered field is known as a function of

k = w/c.14 Chu and Politis1 5 in calculating the radar cross section of

the ionized wake of a hypersonic body used the field equations in integral

form. They considered a cylindrical plasma having an electron density

distribution of the form

r zexp - - (29)n maxa-

With this density distribution and the application of the Born approxima-

tion, the integrations in Eq. (24) can be carried out in closed form.

Results are presented for various experimental conditions.

Another procedure for obtaining diagnostic information from the

interaction of microwaves with inhomogeneous plasmas will be discussed

in Section V. First, however, we shall present some results from a study

of the effect of the variation of collision frequency on microwave inter-

actions with inhomogeneous plasmas.

IV. EFFECT OF THE COLLISION FREQUENCY PROFILE

The studies of inhomogeneous plasmas have indicated that if micro-

wave analysis is to be used as a plasma diagnostic, the correct electron

density profile must be used in the calculations. However, in the

previous studies, constant collision frequency, though not justified,

is assumed. In some plasmas (e.g., highly ionized plasmas where the

electron density determines, in part, the collision frequency profile)

the collision frequency profile may have an important effect on the micro-

wave interactions. Because the variation of collision frequency with

position has been neglected and because only a limited number of density

profiles have been treated, a study was undertaken to develop an efficient

computer program for determining the microwave interactions with semi-

infinite plasma slabs which have arbitrary electron density and collision

frequency profiles. The program has been applied to plasma slabs which

have Gaussian electron density distributions in order to investigate the

effect of varying the sharpness of Gaussian shape collision frequency

profiles.

10



The width of the semi-infinite inhomogeneous plasma slab is determined

by the criteria that outside the slab the magnitude of the plasma dielectric

coefficient differs from the free space coefficient (i.e., unity for the

Gaussian units used) by less than one-one thousandth. The object of this

study has been to obtain an estimate of the degree of error which may

result when constant collision frequency is assumed instead of a more

realistic collision frequency profile. Khowledge of the degree of error

is of particular importance when microwave analysis is to be used as a

plasma diagnostic, for it will be shown that the collision frequency pro-

file may have a rather dramatic effect on the interactions of microwaves

with inhomogeneous plasmas. A preliminary report of these results has

been presented elsewhere.1
6

The plasma electron density and collision frequency profiles which

we have considered are

(W /W 2 =a ( /W)2 exp -(x/d )2  (30)
p p max -

(vAD = (v/w) exp[- Nx/d) 2 _1 (31)

The width of the Gaussian density distribution is determined by d

(measured in units of the free space wavelength, the velocity of light

divided by the applied frequency); the parameter N, which we vary

between zero and two, determines the sharpness of the collision frequency

profile. The range of the parameters which we considered are as follows:

0.16 < (w /w)2 < 100
- p max -

.001< (vw)mx < 10

.01 < d < 3

The reflection, transmission, and absorption of the microwaves by the

plasma slab were obtained by integrating the differential field equation

(Eq. 17) numerically. The technique used in the integration is a backward

difference method suggested by Cowell. 1 7 The difference equation is based

on Stirling's interpolation formula and does not contain the first or any

11



odd differences. Consequently, the integration procedure is rather

efficient. A brief outline of the integration procedure is presented

in Appendix I.

An amplitude and phase for the wave transmitted by the slab are

assumed, and the usual boundary conditions of continuous tangential

fields are employed. The computer program yields the incident and

reflected waves (and associated phase angles) corresponding to the assumed

transmitted wave. The reflection and transmission amplitudes are then

readily obtained. When this study was started, it was hoped that rules

of thumb could be developed for taking into account the collision

frequency profile so that cumbersome numerical calculations could be

avoided. This objective has been accomplished only in part, for, within

the range of variables considered, the collision frequency profile often

has a rather dramatic effect.

The microwave interactions with plasma slabs having four different

collision frequency profiles will be presented in order to illustrate

the effect of the variation of collision frequency on the interaction of

microwaves with the inhomogeneous plasmas. The four profiles are shown

in Figure 1. The profiles considered are:

(V/cs) = (V/cs)Ma exp [-(Nx/d )2]

N = 0 Constant collision frequency

N = 0.5 Broad Gaussian profile

N = 1.0 Gaussian profile equivalent to that of the

electron density

N = 2.0 Sharp Gaussian profile.

In Figure 2, the reflected intensity (normalized to unit incident in-

tensity) is plotted as a function of d (one-half the distance, in units of

free space wavelength, between the poiz.ts at whicn the electron density

falls off to one e'th its peak value). In the plasma referred to in

Fig. 2, (w /1) = 4 and (v/c)' = 1.0. It can be seen that significant
p max max

errors in plasma diagnosis would result if variations in the collision

frequency profiles are neglected. In Fig. 3, the microwave reflection
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is plotted as a function of (W /W )2  for a plasma characterized by
p max

d = 0.3 and (/ )max = 10. Here also, it is apparent that diagnostic

calculations of electron density would be incorrect if constant collision

frequency is assumed for a situation when the collision frequency profile

is, in fact, Gaussian. Note that the N = 0.5 profile yields a -maller

reflected intensity than when the collision frequency is constant. The

reflected intensity first decreased as N varied from 0 to 0.6 and, then,

the reflected intensity reversed sharply, and increased, as N continued

to become larger. The cause of this behavior is as follows: As N varied

from 0 to 0.6, the Gaussian profile became sharper, lowering the average

collision frequency. As a consequence, the reflection from the first

surface increases, but the rate of microwave absorption in the plasma also

increases so that the microwave intensity reflected from the second surface

is decreased to the point that the net result is a decrease in total reflected

intensity. For a semi-infinite plasma (as opposed to a plasma slab)

decreasing the collision frequency produces a monotonic increase in

reflected intensity. When N is greater than 0.6 practically all the

reflection occurs at the first surface so that the reflection increases

with N.

Attempts were made to obtain criteria for determining effective

constant collision frequencies to replace the Gaussian profiles. However,

in some instances, for fixed d or for fixed peak plasma frequency, the

reflected intensity is increased more by replacing the constant collision

frequency by the sharp Gaussian (with N = 2) than by replacing it with a

constant profile of one-tenth the original value; whereas, in other cases,

the constant profile of one-tenth the original collision frequency resulted

in the larger increase of the reflected intensity. For the range of d

considered, it was also noted that the difference in the reflected intensity

resulting from the collision frequency profiles corresponding to N = 1

and N = 2 decreases and becomes insignificant as the peak plasma frequency

increases and the peak collision frequency decreases. This is shown in

Table 1 below:
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Insignificant Difference in Reflected Intensity

from N = 1 and N = 2 Profiles for

(V/) = 0.01 and All (w /w) 2 considered
max p max

(v/w)m = 0.1 and (W M 2 > 1x p max -
= 1.0 and (W /W) > 40

Max p max -

10/) =10 and ((o /w)2  > X where X > 100maxp max -

Table 1

Figures 4 and 5 demonstrate the effect of the same four Griussian

collision frequency profiles (i.e., those shown in Fig. 1) on the trans-

mission of microwaves through the inhomogeneous plasma. In Fig. 4 the

transmitted intensity is plotted as a function of (W /W) 2 for the slab
p max

in which (v/w)max = 10 and d = 0.3. In general, for the peak value of

(w!p 1w) < 1.0 and d < 1.0, the difference in the transmitted intensity

resulting from a constant collision frequency profile and the profile for

N = 0.5 is not significant. Figure 5 shows the transmission as a function

of d for the plasma in which (wp/o)2  = 2.0 and (v/w)max = 10. Fromp maxmx

Figs. 4 and 5 it is seen that although the error which would result in

the transmitted intensity, if an incorrect collision frequency profile

were assumed, is not as dramatic as the resulting errors in the reflected

intensity, the errors in the calculated transmitted intensity would be

significant. The following two conclusions about the reflected and trans-

mitted intensities can be made from this study: (1) Within the range of

variables considered, when (v/w) < .01, the effect of the Gaussian collision

frequency profile is not significant; and (2) the importance of using the

correct collision frequency profile increases with increasing d.

Finally, we shall briefly consider the effect of the collision

frequency profile on microwave absorption in an inhomogeneous plasma. In

Fig. 6, the absorbed intensity is planned as a function of d for a plasr
2in which (wp w) 40 and (v/r) 1.0. When the peak value O
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(w / w) > 1 the effect of the collision frequency profile is rather

dramatic as shown; whereas for (W /p)max K 1 the absorption simply

increases with d. For the range of d and (w0o/w)max considered, when

the peak value of (v/w) < 1 the absorption decreases as N increases,

i.e., as the collision frequency profile becomes sharper.

In investigating the importance of using the correct collision fre-

quency, a computer program has been developed for determining microwave

interactions with plasma slabs which have arbitrary electron density and

collision frequency profiles so that we are not restricted to a small

number of profiles.

V. SUNMARY

By the presentation in the previous section of the sample results

indicating the effect of the collision frequency profiles on plasma-

microwave interactions, we have attempted to demonstrate that for certain

ranges of plasma parameters, the collision frequency profile may have a

very important effect on the interactions of microwaves with plasmas. For

example, from the data presented, it is apparent that order of magnitude

errors in the electron density and/or plasma thickness may result if the

variation of collision frequency with position were neglected. From Klein's

studies, as well as the other studies of inhomogeneous plasmas, it can be

seen that except when either the electron density variations occur over

distances very small compared to the wavelength or when the electron density

is very low, incorrect results would be obtained if a uniform plasma with

some average electron density were assumed to represent the inhomogeneous

plasmas. Thus, since a variation of electron density or collision frequency

with position may yield results quite different than those obtained when

a uniform plasma is assumed, extreme care must be exercised when micro-

wave analysis, based on an effective dielectric description, is applied

for plasma diagnosis. For example, the anomalous results obtained when micro-
18

waves are reflected from the wake of a re-entering body may be a consequence

of neglecting the variation of electron density and collision frequency.

We have not yet applied the results of our study to practical problems for

our first object was to determine the importance of using correct profiles.
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Before concluding, we shall briefly mention the possible utilization

of electromagnetic scatter from density fluctuations. R. Pappert recently

considered the application of this technique with regard to analysis of

the wake of a hypervelocity projectile, 19 and a number of groups are

currently engaged in the development of such a laboratory tool. The the-

ory for electromagnetic scatter has been considered in connection with

ionospheric studies.20 - 23 When the effective dielectric theory, described

in Sections II and III, is employed, it is possible to probe the ionosphere

only to altitudes corresponding to the F layer; however, by observing the

backscatter from electron density fluctuations, it is possible, in principle,

to probe beyond the peak ionospheric electron density. Recently, Bowles
24

reported successful probings of the ionosphere and extensive tests are

planned for the future.

The technique of employing electromagnetic scattering as a plasma

diagnostic tool is based on the following considerations: Under appropri-

ate conditions (i.e., 1, the scattering volume dimensions large compared

with the incident radiation wavelength but small compared with the distance

to point of observation; 2, the Born approximation valid; 3, the inter-

electron spacing large compared with scattered wavelength; and 41 the time

of observation long compared with ratio of scattered wavelength to electron

rms thermal speed), it can be shown that the number of electrons in a scatter-

ing volume can be obtained by measuring the intensity of scattered radiation,

the distance from the scattering volume to the point of observation, and

the angle between the incident and scattered radiation. Also, if the

primary broadening mechanism is Doppler broadening, the scattered intensity

per unit frequency interval may yield either the electron or the ion

temperatures. If the inter-electron spacing is small compared to the

scattered wavelength (the opposite of the limit considered above), the

differential cross section per unit frequency yields the Fourier transform

of the density space time auto-correlation function from which it may be

possible to infer the electron density distribution.

I wish to acknowledge the aid given by Adolf Hochstim and Arthur

Anderson in the investigation of the effect of collision frequency profiles

on microwave plasma diagnostics. Also, I wish to express thanks to Richard

Marriott for having indicated the applicability of the numerical method

used in the calculations.

16



REFERENCES

1. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma
(Gordon and Breach, New York, 1961), p. 36.

2. V. A. Bailey, Phys. Rev. 96, 865 (1954).

3. R. Pappert and G. Plato, "Study of Magneto-Ionic Modes with Application
to Telemetry," Confidential, Convair Physics Section Report ZPh-081 (1961).

4. F. A. Albini and R. C. Jahn, J. Appl. Phys. 32, 75 (1961).

5. L. S. Taylor, IRE Trans. on Antennas and Propagation, AP-9
483 (1961); AP-9 582 (1961).

6. M. Klein, H. Greyber, J. King, and K. Brueckner, Electromagnetic

Effects of Re-entry (Pergamon Press, New York, 1961), pp. 105-115.

7. M. Klein, General Electric MSVD, Technical Information Series 61 SD 116.

8. M. Klein, General Electric MSVD, Technical Information Series 61 SD 117.

9. M. Klein, General Electric MSVD, Technical Information Series 61 SD 118.

10. M. Klein, General Electric MSVD, Technical Information Series 61 SD 119.

11. K. G. Budden, Radio Waves in the Ionosphere (Cambridge University Press,

Cambridge, 1961).

12. ]bid ]4Chapters III-VI.

13. J. R. Barthel , "Microwave Analysis of a Column of Ionized Gas," Convair

Physics Section Report ZPh-096 (1961).

14. J. R. Barthel, Proceedings of the IRE 50, 2129 (1962).

15. C. M. Chu and D. T. Polits, Bendix Systems Division Report, BSC

28251 (1961).

16. A. R. Kritz, A. R. Hochstim, A. F. Anderson, Bull. Am. Phys. Soc. 7,
480 (1962).

17. Vid. J. Jackson, Astr. Soc. Not. 84, 602 (1923).

18. Down-Range Anti-Missile Measurement Program Reports, prepared by the

Missile and Surface Radar Division of Radio Corporation of America (Secret).

19. R. Pappert, private communication.

20. J. P. Dougherty and D. T. Farley, Proc. Roy. Soc. A259, 79 (1960).

17



21. E. E. Salpeter, Phys. Rev. 120, 1528 (1960).

22. J. A. Fejer, Can. Journ. of Phys. 38, 1114 (1960).

23. T. Hagfors, Stanford Electronics Laboratories, Report No. 1 (1960).

24. K. L. Bowles, Phys. Rev. Letters 1, 454 (1958); National Bureau of
Standards, Boulder, Colorado, Report 6070 (1959).

25. N. A. Khizhniak, Soviet Phys.-Tech. Phys. 3, 1466 (1958).

18



APPENDIX I

The microwave field, E, propagating in an inhomogeneous plasma in

the direction of the gradient of the dielectric coefficient, i.e., V e(x)l

satisfies the equation

d2E + k 2 (x)E =. (i-)

dx
2

Because the dielectric coefficient for a plasma is a complex function,

(X) r(X) + ie i(x) (1-2)

(see Eq. 13), the study of an inhomogeneous plasma requires the simultane-

ous solution of the following two differential equations:

u" = -4T2 (iU - iv)

= -4. 2 (Eiu + CrV), (1-3)

where the independent variable is in units of free space wavelength and

E = u + iv. Equations (1-3) can be solved by a straightforward extension

of the procedure outlined below for the integration of a second order

differential equation of the form

y"(T) = f(T)y(T) + g(T). (1-4)

The solution of Eq. (I-4) is based on the following difference equation

derived from Stirling's interpolation formula:

Yi h2 - i " 20 i

where h is the interval by which T is increased at each step of the integra-

tion (taken such that - E2y ' and higher order terms are negligible) and

Yi is the value of y at the i'th step. The difference notation for a

function y evaluated at constant interval can be understood from Table I-'

below:
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yo

8 yl/2 6 Yl/2

-2YI Yl 52YI

5-3y3/ 2  b 3/2  by2 3 y 3 / 2

5-2 2Y2 2y2

-ly 5/2 1y 5/2

Y3

Table I-i

where the terms are connected by the relationships

bn+l YM/2 = bnYl/2(s+l) - bYl/2(s-l) (1-6)

for any integer s. By substituting y from Eq. (T-4) into Eq. (1-5) and

solving for y, one obtains

y h 2 /% [5-2 y i + -L g (1-7)

i =i -h 2 f121
once two starting values for y are known, y0 and yl,(in the plasma study

where only one value of y is known, the value of y, a distance h away, is

generated by a Taylor's expansion) the numerical solution to Eq. (1-3)

can be tabulated as follows:
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-ri i~ i i2 ±+i/ 2

0 co f go y y- ()

h , fl 1 Y, Ai 6 2 , (

2h '2 f2 g2  (iv) (v) (iii) (vi)

3h 3 f3 g3

4h C f4 94

Table 1-2

The known functions f, g, and 1- 1- f are tabulated at the required

interval. The values for y" and y can be obtained by substituting

y and yl into Eq. 1-4. Then 6-2yot b-2 y" are calculated from Eq. (1-7).
o 1

The integration routine then proceeds:

(i) 6- Yl/2 - " 2

(ii) 6- ,3/2 - 1/2 l

(iii) b-2 ,,i = b-2 ,, It + (-l i t,
Y2  Yl+ Y3/2

h2  F,- Y I
(iv) Y2 = a 2 - 12

2._ 2 2- g2

(v) y- f2y2 + e

Y5"/2 = 3/2 + Y2 etc.
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